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LEITER TO THE EDITOR 

Raising operators for the osp(l/2N, R) orthosymplectic Lie 
superalgebras 

C Quesnet 
Physique Nucltaire ThCorique et Physique MathCmatique, Universitt Libre de Bruxelles, 
Campus de la Plaine ULB, C P  229, Boulevard du Triomphe, B-1050 Bruxelles, Belgium 

Received 20 January 1989 

Abstract. The branching rule is obtained for the decomposition of the osp(1/2N,R) 
oscillator-like unitary irreducible representations into sp(2N, R) representations. Raising 
operators for osp(l/2N, W) 3 sp(2N, R) are determined and used to construct a basis in 
the irreducible representation carrier space. The matrix elements of the odd generators 
between two sp(2N, R )  lowest-weight states are calculated. The general results so obtained 
are illustrated with the osp(l/4, R) example. 

Shift operators are known to be very useful for constructing a basis in the carrier space 
of a Lie group unitary irreducible representation (irrep). In particular, whenever the 
carrier space contains a highest- (lowest-) weight state, the whole space may be obtained 
by applying appropriate lowering (raising) operators to the highest- (lowest-) weight 
state. Shift operators were explicitly constructed for all the classical compact groups, 
for many non-compact groups, and for some non-semisimple groups (Nagel and 
Moshinsky 1965, Pang and Hecht 1967, Wong 1967, 1974, Patera 1973, Patera er a1 
1974, Hughes 1973, Hughes and Yadegar 1978, Bincer 1977, 1978a, b, 1982, Quesne 
1987, 1988). 

During recent years, the increasing importance of supersymmetry concepts in 
physics has stimulated the study of the representation theory of Lie superalgebras and 
supergroups (Scheunert 1979, Bars 1985). In such a context, shift operators also prove 
to be very useful, although up to now full advantage has not been taken of them. Their 
usefulness was illustrated by Hughes (1981), who employed them to classify the irreps 
of the osp( 1/2) and osp( 1/2, R) orthosymplectic superalgebras, whose even part is the 
Lie algebra usp(2) or sp(2, R). 

In this letter, we construct raising operators for the oscillator-like unitary irreps 
(Bars and Gunaydin 1983) of the osp( 1/2N, R) orthosympletic superalgebras, thereby 
providing a basis of their camer space, classified according to the chain osp( 1/2N, R) 3 

sp(2N, R) 2 u(N)  3 u ( N  - 1) 3 . . . 3 u(1). This is the first step in the resolution of a 
similar problem for the class of superalgebras osp(M/2N, R), when reduced to their 
subalgebra so( M)Osp(2N, R). Such superalgebras play an important role in applica- 
tions, among others because the corresponding supergroups OSP( M/2N,R) are the 
groups of canonical transformations for mixed systems of bosons and fermions (de 
Crombrugghe and Rittenberg 1983, Balantekin er a1 1988). The orthosymplectic super- 
algebras with M = 1 are the simplest to deal with, since they are the only superalgebras 
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for which the direct products of all finite-dimensional representations are completely 
reducible (DjokoviC and Hochschild 1976). Whenever M > 1, one needs to treat typical 
and atypical representations individually. 

A basis for the even part of osp(l/2N, R) consists of the sp(2N, R) generators 
E,  = ( E j l ) + ,  Ob, D, = (D’,)+, i, j = 1, .  . . , N, and the odd part has basis elements F,, 
G, ,  i = 1, .  . . , N, which form a 2N-dimensional vector representation of the sp(2N, R) 
algebra. The non-zero commutation and anticommutation relations satisfied by these 
elements are 

[ E , ,  E k r ]  = &EI/ - a,,&, 
[ E , ,  D:,1 =ajkDl/+a~/~:k [ E , ,  Dk/l = -azkD,, - SdDjk 

[DL, F k ]  = -an@, - a,@, LD, ,  Gkl = a i k c  + 

{e, 5 )  = D, {Fry G J =  E,I { G l ,  GI} = D’,. 

Here E,,,  i = 1, . . . , N, are the sp(2N, R) weight generators, while E,  ( i  < j ) ,  Ob, G,, 
and E,  ( i  > j ) ,  D,, F, respectively raise or lower the sp(2N, R) weight. Note that E,, 
i, j =  1,.  . . , N, span the u ( N )  subalgebra of sp(2N, R). 

It is straightforward to show that no gradestar representations (Scheunert et a f  
1977) of osp( 1/2N, R) can occur, but that there are two classes of star representations, 
depending on whether G, = F:  or GI = -FT. In the present work, we shall restrict 
ourselves to oscillator-like unitary irreps in a super Fock space (Bars and Gunaydin 
1983), in which case G, = FS. This super Fock space 9 is defined as the tensor product 
of the Fock spaces of Nn pairs of boson creation and annihilation operators b:,, b,,, 
i = 1,. . . , N, s = 1,. . . , n, and n pairs of fermion operators a:, a,, s = 1,. . . , n. In 9, 
the osp( 1/2N, R) generators can be written as 

n n n 

E,  = b:sbj, +ins, DL = bi,bJs D, = 2 bisbjs 
s=1 s=1  s=1  

n n 
F:  = 2-l” b:,( a: + a,) F, = 2-”2 c bis(ai+ as) .  

, = l  s=l 

In the realisation (2a) ,  the sp(2N, R) algebra has only positive discrete series irreps, 
the so-called harmonic series irreps (King and Wybourne 1985). They are characterised 
by their lowest-weight 0, and denoted by (U ) .  Here w is a shorthand notation for 
w1w2. .  . w N ,  and wi  is given by wi  = Ai + n/2, where [ A , h 2 . .  . A N ]  may be any partition 
into non-negative integers (provided that n 2 2N, which we shall henceforth assume). 
The lowest-weight state (LWS) 1 0 )  of (0) satisfies the equations (Deenen and Quesne 
1984) 

Eiilw) = wN+I-i lw)  ( 3 a )  

E,lw) = 0 i>j ( 3 b )  

D,lw) = 0. (3c) 
Note that some additional quantum numbers, which are omitted, may be necessary to 
completely specify I w ) .  
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In a given osp(l/2N, R) irrep, let us select an sp(2N, R) LWS lo). If such a state 
is not annihilated by F,,  then we replace it by Fllo). As it results from (1) and (3), 
the latter is annihilated by F1, while satisfying equations similar to (3), thence being 
the LWS of an sp(2N, R) irrep. Having selected an sp(2N, R) LWS annihilated by F1, 
we then proceed in a similar way with F2 and construct an sp(2N, R) LWS annihilated 
by both Fl and F2.  Having considered the remaining Fi, i = 3, . . . , N, we finally arrive 
at a state la), satisfying the equations 

Eii 1 a) = 0 N + 1 - i I a) J5,p-l) = 0 ( i  > j )  DijIa) = 0 F i l a )  = 0. (4) 

From (4), it follows that la) is the LWS of the lowest-weight sp(2N,R) irrep (a), 
contained in the considered osp( 1/2N, R) irrep. Hence, the latter has a lowest weight, 
which may serve to characterise it. In order to distinguish it from the sp(2N, R) irrep 
(a), built on the same LWS, we shall use the mixed orthogonal-symplectic notation 
(a) for the osp(l/2N, R) irrep. 

All the states belonging to the camer space of (a) may now be obtained from In) 
by applying the elements of the osp(l/2N, R) universal enveloping algebra. From the 
PoincarC-Birkhoff-Witt theorem, a basis of the latter is made of the operators 

where kj,  mu, P ~ E N ,  f i ,  nie{O, l}, and we used (1) to put all the raising (weight) 
generators on the left of the weight (lowering) generators. From (4), the action of (5) 
on In) gives rise to the states 

where k, E N ,  fi E (0, l}, la(0)) denotes a Gel'fand state ofthe U( N )  irrep [a] containing 
the LWS In), and (0) is a Gel'fand pattern (Gel'fand and Tseitlin 1950). The set of 
states (6) form a non-orthonormal basis of (a) which we shall call the monomial basis. 

The monomial basis states are neither characterised by a definite sp(2N, R) irrep, 
nor by a definite u ( N )  irrep. A u ( N )  basis can, however, be easily constructed. For 
this purpose, we note that FT, i = 1,.  . . , N, transform under the U( N )  irrep [ 13, and 
that the product of two operators Fj  and FJ can be written as 

where Db and [ F i ,  Fj'] transform under the u ( N )  irreps [2] and [12] respectively. 
Hence, u ( N )  basis states can be written as 

In (8), Py(Dt )  is a polynomial in the D$ operators, characterised by a given u ( N )  
irrep [ V I ,  where vi, i = 1, .  . . , N, are non-negative even integers (Deenen and Quesne 
1982); Qrlll(Ft) is obtained by antisymmetrising a product of f operators FT and 
transforms under the u ( N )  irrep [l']; the square brackets denote couplings of u ( N )  
irreps, either that of [a] and [l'] to [ U ] ,  or that of [ U ]  and [v] to [ h ] ;  p distinguishes 
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between repeated irreps [ h ] ,  and ( h )  is a Gel'fand pattern of [ h ] .  When I runs over 
the set (0, 1, . . . , N } ,  the labels wl, . . . , w N  take all the values satisfying the inequalities 

fils w , s R 1 +  1 0, s w ,  s min(R, + 1, w , - ~ )  i=2 ,  . . . ,  N. (9) 

If we list in order of increasing weight all the u ( N )  irreps [ h ] ,  which appear in 
(8) for a given R, we just obtain the u ( N )  content of the set of sp(2N, R) irreps (a), 
whose labels fulfill the inequalities (9). Hence, the branching rule for the decomposition 
of the osp(l/2N, R) irrep (0) into sp(2N, R) irreps ( w )  is given by 

A generic osp( 1/2N, R) irrep therefore contains 2N sp(2N, R) irreps. This generalises 
the well known 'dispin' structure of the osp( 1/2, R) irreps (Hughes 1981). 

Basis states of (a), classified according to the chain osp( 1/2N, R) 3 sp(2N, R) 3 

U( N )  2 U( N - 1) 2 . . . 3 U(  l),  may be written as 

IRwwh(h)) = [PADt) x IRw,l?& 

[QLlll(F+) x IR>I;",in, 

(11) 
where IRw) denotes the LWS of ( U )  contained in (a), and there is a coupling of the 
u ( N )  irreps [ w ]  and [ V I  to [h]. Except for 1 = O  or 1, the states 

where (min) is the lowest-weight Gel'fand pattern of [U], do not coincide with IRw) 
because they do not satisfy (3c). The LWS IRo) can, however, be constructed from 
la) by the raising operator technique (Bincer 1977, 1978a, b, 1982). By definition, the 
raising operators Ri, i = 1, . . . , N, for osp( 1/2N, R) 3 sp(2N, R), are operators acting 
in the carrier space of (a), and transforming any LWS IRw) into another LWS [no'), 
where wj = wj + aji: 

Here N i ( w ,  mi) is some normalisation coefficient. Equation (12) is equivalent to the 
conditions 

Ril = aN+I-j,iRz [Ejk, RillRw) = 0 j > k  

Ri(Rw) = Ni(w ,  o' ) (Ro' ) .  (12) 

(13) 
[Djk, R,]lfkU) = 0. 

To solve (13), it is convenient to denote the osp( 1/2N, R) generators by Aop,  Vu, 
where greek indices run over *l ,  . . . , * N ,  and 

A .  . = A - . . = E . .  
I.-J 1.1 0 

(14) 

It is then obvious that the raising operators assume a form similar to that of the 
raising operators for wsp(2N, 88)  3 sp(2N, R) (Quesne 1988). In both cases, they indeed 
only depend on the vectorial character of Vu. Hence, Ri can be expressed as 

A - .  . = D .  
1,-J V 

A .. = D f .  
rJ B 

V, = F: v-i= F, i , j = l ,  . . . ,  N. 

R i = - [  v' Ti]j++l-,= -c go'V0Tb,N+1-, (15) 
00 

where gap is the inverse of the sp(2N, R) metric tensor go, = ( a / l a / ) 8 0 , - p ,  Ti is given 
by 
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and A * A is to be understood as the tensor operator whose components are 

( A  * AIo@ =C gySAmy&p 
Y6 

The normalisation coefficient N i ( o ,  U ' )  in (12) is, however, different from that 
obtained for wsp(2N, R) 2 sp(2N, R), because explicit use of the anticommutation or 
commutation properties of V, (depending on which ones do apply) is made in its 
calculation. For osp( 1/2N, R) 2 sp(2N, R), the result is 

m 
N ~ (  o, ai )  = (- 1)"2(R, - i )  (oP, - R,  + i - p j  + 1) (a, + R ,  - i - ql) 

1 I 
x (ai  - i + 1) fl ( Ri  + a,,, - i - pj + l ) (Ri  + a,,, - i - pj + 2) [ ( j = 1  

where 

U] = a, + SI,#,  + . . .+SI , , ,  

{pi . . . PmiPm+i . . . pi) U (41 . . . qN-i-i)={l . . 

P m  < i < Pm+ I 

N )  

PI<P2< e . .  <PI qI<q2< * * <qN-l-l 

41 < i < % + I .  

During the calculation of Nl(o, m i ) ,  the matrix elements of the odd generators F: 
between two sp(2N, R) LWS are obtained in the form 

(aw 'p=: Iao)  
= k, N + 1 - 1(-1) m + i - l  [(a, - i + 1) 

) LI 
1 

x ( f i  (aq, -R,  + i-q, - l ) (Rqj  -a, + i - q l ) - l  
] = I  ) 1 

I 

x n ( ~ , + ~ ~ , - i - p ~ + 2 ) ( R , + R ~ , - i - p ~ + 1 ) - '  

fl (RI  - R p, + pl - i - 1 ) ( R , - R ,,, + pf - i ) 
(]=:+I 

. (19) 

As an illustration of the general results, let us consider the case of osp(l/4, R) 2 
sp(4,R). The two raising operators RI and R2, as defined in (15), depend on the 
sp(4,R) weight wIw2  that is being raised. Equivalent operators, independent of the 
weight, can, however, be recovered by taking (3) into account, and are given by (Quesne 
1987): 

RI = 2F:(E22- ~ ) ( E I I  + Ez2-3) -[20:2(E22- 1) - D L E I ~ I F I  - DL(Eii + E22-2)Fz 

R2 = 2[F:(Ell- E22) + F:E121(EIl- 2)(Ell+ E 2 2  - 3) 

-[D:l(Ell- E 2 2 +  l)(EIl+ E22-2)+2D:zE,z(E22-2) - D:,E:,IFI 

-2[D:2(E11 - E n )  + DLEi,I(Ei - 2)F2. (20) 
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Ageneric osp( 1/4, W) irrep (0,0,) contains four sp(4, R) LWS corresponding to ( w l w 2 )  = 
(0,0,), (0, + 1,  a,), ( R I ,  Rz+ l ) ,  and (0, + 1 ,  a,+ 1) respectively. The explicit form 
of the latter three directly results from (18) and (20) and is given by 

p,n,, n, + l a , )  = R;’/2F:IRlR2) 

1 ~ 2 1 % ,  f - h f i z +  1)  

I ~ , ~ , ,  a, + 1 a,+ 1)  

= [(R,- l ) (R,  -0,)(0, -a,+ l)]-1/2[-(Rl -n2)F:+F:EI2]10,R2) 

= j [ 0 , ( R 2 -  1)(0, +R,- 1 ) ( 0 ,  +R, -2)]-”2[2(n, +R2-2)F:F: 

(21) 

-an1 - 1 ) 0 : 2 +  ~:2E1211~21~2) 

E12I~l~Z)  = (0, - 0 2 ) 1 ’ z l ~ l ~ 2 ( % +  1)) 

where we may also write 

(22) 

where (a2+ 1 )  is a Gel’fand pattern of [R,R,]. 

available (Quesne 1988). 
For the raising operators of osp( 1/6, W) 3 sp(6, R), detailed expressions are also 
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